general clean up & added help text

removed symbolic link calling path
This commit is contained in:
2025-12-23 13:06:07 -05:00
parent 0e2098ceec
commit 1d70935b64

View File

@@ -5,7 +5,6 @@ import random
import lzma import lzma
import torch import torch
from torch import nn
from torch.nn import functional as F from torch.nn import functional as F
import re import re
@@ -32,7 +31,10 @@ LOGGING_PATH = "./files/output.log"
EMBED_CHART_PATH = "./files/embedding_chart.png" EMBED_CHART_PATH = "./files/embedding_chart.png"
EMBEDDINGS_DATA_PATH = "./files/embedding_data.csv" EMBEDDINGS_DATA_PATH = "./files/embedding_data.csv"
TRAINING_LOG_PATH = "./files/training.log.xz" TRAINING_LOG_PATH = "./files/training.log.xz"
LOSS_CHART_PATH = "./files/training_loss_v_step.png"
ACC_CHART_PATH = "./files/training_error_v_step.png"
# TODO: Move plotting into its own file
def parse_training_log(file_path: str) -> pd.DataFrame: def parse_training_log(file_path: str) -> pd.DataFrame:
text: str = "" text: str = ""
with lzma.open(file_path, mode='rt') as f: with lzma.open(file_path, mode='rt') as f:
@@ -49,6 +51,7 @@ def parse_training_log(file_path: str) -> pd.DataFrame:
return df return df
# TODO: Move plotting into its own file
def plt_loss_tstep(df: pd.DataFrame) -> None: def plt_loss_tstep(df: pd.DataFrame) -> None:
# Plot 1: Loss # Plot 1: Loss
plt.figure(figsize=(8, 4)) plt.figure(figsize=(8, 4))
@@ -58,11 +61,12 @@ def plt_loss_tstep(df: pd.DataFrame) -> None:
plt.ylabel("Loss (log scale)") plt.ylabel("Loss (log scale)")
plt.title("Training Loss vs Step") plt.title("Training Loss vs Step")
plt.tight_layout() plt.tight_layout()
plt.savefig('./files/training_loss_v_step.png') plt.savefig(LOSS_CHART_PATH)
plt.close() plt.close()
return None return None
# TODO: Move plotting into its own file
def plt_acc_tstep(df: pd.DataFrame, eps=1e-10) -> None: def plt_acc_tstep(df: pd.DataFrame, eps=1e-10) -> None:
# Plot 2: Accuracy # Plot 2: Accuracy
df["err"] = (1.0 - df["acc"]).clip(lower=eps) df["err"] = (1.0 - df["acc"]).clip(lower=eps)
@@ -73,11 +77,12 @@ def plt_acc_tstep(df: pd.DataFrame, eps=1e-10) -> None:
plt.ylabel("Error rate (1 - accuracy) (log scale)") plt.ylabel("Error rate (1 - accuracy) (log scale)")
plt.title("Training Error Rate vs Step") plt.title("Training Error Rate vs Step")
plt.tight_layout() plt.tight_layout()
plt.savefig('./files/training_error_v_step.png') plt.savefig(ACC_CHART_PATH)
plt.close() plt.close()
return None return None
# TODO: Move plotting into its own file
def plt_embeddings(model: comp_nn.PairwiseComparator) -> None: def plt_embeddings(model: comp_nn.PairwiseComparator) -> None:
import csv import csv
@@ -127,7 +132,8 @@ def set_seed(seed: int) -> None:
if torch.cuda.is_available(): if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed) torch.cuda.manual_seed_all(seed)
# Data: pairs (a, b) with label y = 1 if a > b else 0 -> (a,b,y) # pairs (a, b) with label y = 1 if a > b else 0 -> (a,b,y)
# uses epsi to select the window in which a == b for equality training
def sample_batch(batch_size: int, low=BATCH_LOWER, high=BATCH_UPPER, epsi=1e-4) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: def sample_batch(batch_size: int, low=BATCH_LOWER, high=BATCH_UPPER, epsi=1e-4) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
a = (high - low) * torch.rand(batch_size, 1) + low a = (high - low) * torch.rand(batch_size, 1) + low
b = (high - low) * torch.rand(batch_size, 1) + low b = (high - low) * torch.rand(batch_size, 1) + low
@@ -139,6 +145,8 @@ def sample_batch(batch_size: int, low=BATCH_LOWER, high=BATCH_UPPER, epsi=1e-4)
return a, b, y return a, b, y
def training_entry(): def training_entry():
get_torch_info()
# all prng seeds to 0 for deterministic outputs durring testing # all prng seeds to 0 for deterministic outputs durring testing
# the seed should initialized normally otherwise # the seed should initialized normally otherwise
set_seed(0) set_seed(0)
@@ -189,6 +197,8 @@ def training_entry():
log.info(f"Saved PyTorch Model State to {MODEL_PATH}") log.info(f"Saved PyTorch Model State to {MODEL_PATH}")
def infer_entry(): def infer_entry():
get_torch_info()
model_ckpt = torch.load(MODEL_PATH, map_location=DEVICE) model_ckpt = torch.load(MODEL_PATH, map_location=DEVICE)
model = comp_nn.PairwiseComparator(d=model_ckpt["d"]).to(DEVICE) model = comp_nn.PairwiseComparator(d=model_ckpt["d"]).to(DEVICE)
model.load_state_dict(model_ckpt["state_dict"]) model.load_state_dict(model_ckpt["state_dict"])
@@ -210,46 +220,95 @@ def infer_entry():
for (x, y), p in zip(pairs, probs): for (x, y), p in zip(pairs, probs):
log.info(f"P({x} > {y}) = {p.item():.3f}") log.info(f"P({x} > {y}) = {p.item():.3f}")
def graphs_entry():
get_torch_info()
model_ckpt = torch.load(MODEL_PATH, map_location=DEVICE)
model = comp_nn.PairwiseComparator(d=model_ckpt["d"]).to(DEVICE)
model.load_state_dict(model_ckpt["state_dict"])
model.eval()
plt_embeddings(model) plt_embeddings(model)
data = parse_training_log(TRAINING_LOG_PATH)
plt_loss_tstep(data)
plt_acc_tstep(data)
help_text = r"""
pairwise_compare.py — tiny pairwise "a > b?" neural comparator
USAGE
python3 pairwise_compare.py train
Train a PairwiseComparator on synthetic (a,b) pairs sampled uniformly from
[BATCH_LOWER, BATCH_UPPER]. Labels are:
1.0 if a > b + epsi
0.0 if a < b - epsi
0.5 otherwise (near-equality window)
Writes training metrics to:
./files/training.log.xz
Saves the trained model checkpoint to:
./files/pwcomp.model
python3 pairwise_compare.py infer
Load ./files/pwcomp.model and run inference on a built-in list of test pairs.
Prints probabilities as:
P(a > b) = sigmoid(model(a,b))
python3 pairwise_compare.py graphs
Load ./files/pwcomp.model and generate plots + exports:
./files/embedding_chart.png (embed(x) vs x for each embedding dimension)
./files/embedding_data.csv (x and embedding vectors)
./files/training_loss_v_step.png
./files/training_error_v_step.png (1 - acc, log scale)
Requires that ./files/training.log.xz exists (i.e., you ran "train" first).
FILES
./files/output.log General runtime log (info/errors)
./files/pwcomp.model Torch checkpoint: {"state_dict": ..., "d": DIMENSIONS}
./files/training.log.xz step/loss/acc trace used for plots
NOTES
- DEVICE is chosen via torch.accelerator if available, else CPU.
- Hyperparameters are controlled by the "Valves" constants near the top.
"""
if __name__ == '__main__': if __name__ == '__main__':
import sys import sys
import os import os
import datetime import datetime
# TODO: tidy up the paths to files and checking if the directory exists
if not os.path.exists("./files/"): if not os.path.exists("./files/"):
os.mkdir("./files") os.mkdir("./files")
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(LOGGING_PATH),
logging.StreamHandler(stream=sys.stdout)
])
log = logging.getLogger(__name__) log = logging.getLogger(__name__)
logging.basicConfig(filename=LOGGING_PATH, level=logging.INFO) log.info(f"Log file {LOGGING_PATH} opened {datetime.datetime.now()}")
log.info(f"Log opened {datetime.datetime.now()}") # python3 pairwise_compare.py train
get_torch_info() # python3 pairwise_compare.py infer
# python3 pairwise_compare.py graphs
name = os.path.basename(sys.argv[0]) if len(sys.argv) > 1:
if name == 'train.py': match sys.argv[1].strip().lower():
training_entry() case "train":
elif name == 'infer.py':
infer_entry()
else:
# alt call patern
# python3 pairwise_compare.py train
# python3 pairwise_compare.py infer
# python3 pairwise_compare.py graphs
if len(sys.argv) > 1:
mode = sys.argv[1].strip().lower()
if mode == "train":
training_entry() training_entry()
elif mode == "infer": case "infer":
infer_entry() infer_entry()
elif mode == "graphs": case "graphs":
data = parse_training_log(TRAINING_LOG_PATH) graphs_entry()
plt_loss_tstep(data) case "help":
plt_acc_tstep(data) log.info(help_text)
else: case mode:
log.error(f"Unknown operation: {mode}") log.error(f"Unknown operation: {mode}")
log.error("Invalid call syntax, call script as \"train.py\" or \"infer.py\" or as pairwise_compare.py <mode> where mode is \"train\" or \"infer\"") log.error("valid options are one of [\"train\", \"infer\", \"graphs\", \"help\"]")
else: log.info(help_text)
log.error("Not enough arguments passed to script; call as train.py or infer.py or as pairwise_compare.py <mode> where mode is \"train\" or \"infer\"")
log.info(f"Log closed {datetime.datetime.now()}") log.info(f"Log closed {datetime.datetime.now()}")