first commit
This commit is contained in:
181
pairwise_compare.py
Executable file
181
pairwise_compare.py
Executable file
@@ -0,0 +1,181 @@
|
||||
#!/usr/bin/env python3
|
||||
# pairwise_compare.py
|
||||
import logging
|
||||
import random
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
# early pytorch device setup
|
||||
DEVICE = torch.accelerator.current_accelerator() if torch.accelerator.is_available() else "cpu"
|
||||
|
||||
# Valves
|
||||
DIMENSIONS = 1
|
||||
TRAIN_STEPS = 20000
|
||||
TRAIN_BATCHSZ = 16384
|
||||
TRAIN_PROGRESS = 500
|
||||
BATCH_LOWER = -512.0
|
||||
BATCH_UPPER = 512.0
|
||||
DO_VERBOSE_EARLY_TRAIN = True
|
||||
|
||||
def get_torch_info():
|
||||
log.info("PyTorch Version: %s", torch.__version__)
|
||||
log.info("HIP Version: %s", torch.version.hip)
|
||||
log.info("CUDA support: %s", torch.cuda.is_available())
|
||||
|
||||
if torch.cuda.is_available():
|
||||
log.info("CUDA device detected: %s", torch.cuda.get_device_name(0))
|
||||
|
||||
log.info("Using %s compute mode", DEVICE)
|
||||
|
||||
def set_seed(seed: int):
|
||||
random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
# 1) Data: pairs (a, b) with label y = 1 if a > b else 0
|
||||
def sample_batch(batch_size: int, low=BATCH_LOWER, high=BATCH_UPPER):
|
||||
a = (high - low) * torch.rand(batch_size, 1) + low
|
||||
b = (high - low) * torch.rand(batch_size, 1) + low
|
||||
|
||||
# train for if a > b
|
||||
y = (a > b).float()
|
||||
|
||||
# removed but left for my notes; it seems training for equality hurts classifing results that are ~eq
|
||||
# when trained only on "if a > b => y", the model produces more accurate results when classifing if things are equal (~.5 prob).
|
||||
# eq = (a == b).float()
|
||||
# y = gt + 0.5 * eq
|
||||
return a, b, y
|
||||
|
||||
# 2) Number "embedding" network: R -> R^d
|
||||
class NumberEmbedder(nn.Module):
|
||||
def __init__(self, d=8):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(1, 16),
|
||||
nn.ReLU(),
|
||||
nn.Linear(16, d),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
# 3) Comparator head: takes (ea, eb) -> logit for "a > b"
|
||||
class PairwiseComparator(nn.Module):
|
||||
def __init__(self, d=8):
|
||||
super().__init__()
|
||||
self.embed = NumberEmbedder(d)
|
||||
self.head = nn.Sequential(
|
||||
nn.Linear(2 * d + 1, 16),
|
||||
nn.ReLU(),
|
||||
nn.Linear(16, 1),
|
||||
)
|
||||
|
||||
def forward(self, a, b):
|
||||
ea = self.embed(a)
|
||||
eb = self.embed(b)
|
||||
delta_ab = a - b
|
||||
x = torch.cat([ea, eb, delta_ab], dim=-1)
|
||||
|
||||
return self.head(x) # logits
|
||||
|
||||
def training_entry():
|
||||
# all prng seeds to 0 for deterministic outputs durring testing
|
||||
# the seed should initialized normally otherwise
|
||||
set_seed(0)
|
||||
|
||||
model = PairwiseComparator(d=DIMENSIONS).to(DEVICE)
|
||||
opt = torch.optim.AdamW(model.parameters(), lr=2e-3)
|
||||
|
||||
# 4) Train
|
||||
for step in range(TRAIN_STEPS):
|
||||
a, b, y = sample_batch(TRAIN_BATCHSZ)
|
||||
a, b, y = a.to(DEVICE), b.to(DEVICE), y.to(DEVICE)
|
||||
|
||||
logits = model(a, b)
|
||||
loss_fn = F.binary_cross_entropy_with_logits(logits, y)
|
||||
|
||||
opt.zero_grad()
|
||||
loss_fn.backward()
|
||||
opt.step()
|
||||
|
||||
if step <= TRAIN_PROGRESS and DO_VERBOSE_EARLY_TRAIN is True:
|
||||
with torch.no_grad():
|
||||
pred = (torch.sigmoid(logits) > 0.5).float()
|
||||
acc = (pred == y).float().mean().item()
|
||||
log.info(f"step={step:5d} loss={loss_fn.item():.7f} acc={acc:.7f}")
|
||||
elif step % TRAIN_PROGRESS == 0:
|
||||
with torch.no_grad():
|
||||
pred = (torch.sigmoid(logits) > 0.5).float()
|
||||
acc = (pred == y).float().mean().item()
|
||||
log.info(f"step={step:5d} loss={loss_fn.item():.7f} acc={acc:.7f}")
|
||||
|
||||
# 5) Quick test: evaluate accuracy on fresh pairs
|
||||
with torch.no_grad():
|
||||
a, b, y = sample_batch(TRAIN_BATCHSZ)
|
||||
a, b, y = a.to(DEVICE), b.to(DEVICE), y.to(DEVICE)
|
||||
logits = model(a, b)
|
||||
pred = (torch.sigmoid(logits) > 0.5).float()
|
||||
errors = (pred != y).sum().item()
|
||||
acc = (pred == y).float().mean().item()
|
||||
log.info(f"Final test acc: {acc} errors: {errors}")
|
||||
|
||||
# embed model depth into the model serialization
|
||||
torch.save({"state_dict": model.state_dict(), "d": DIMENSIONS}, "model.pth")
|
||||
log.info("Saved PyTorch Model State to model.pth")
|
||||
|
||||
def infer_entry():
|
||||
model_ckpt = torch.load("model.pth", map_location=DEVICE)
|
||||
model = PairwiseComparator(d=model_ckpt["d"]).to(DEVICE)
|
||||
model.load_state_dict(model_ckpt["state_dict"])
|
||||
model.eval()
|
||||
|
||||
# sample pairs
|
||||
pairs = [(1, 2), (10, 3), (5, 5), (10, 35), (-64, 11), (300, 162), (2, 0), (2, 1), (3, 1), (4, 1), (3, 10),(30, 1), (0, 0), (-162, 237),
|
||||
(10, 20), (100, 30), (50, 50), (100, 350), (-640, 110), (30, -420), (200, 0), (92, 5), (30, 17), (42, 10), (30, 100),(30, 1), (0, 400), (-42, -42)]
|
||||
a = torch.tensor([[p[0]] for p in pairs], dtype=torch.float32, device=DEVICE)
|
||||
b = torch.tensor([[p[1]] for p in pairs], dtype=torch.float32, device=DEVICE)
|
||||
|
||||
# sanity check before inference
|
||||
log.info(f"a.device: {a.device} model.device: {next(model.parameters()).device}")
|
||||
|
||||
with torch.no_grad():
|
||||
probs = torch.sigmoid(model(a, b))
|
||||
|
||||
for (x, y), p in zip(pairs, probs):
|
||||
log.info(f"P({x} > {y}) = {p.item():.3f}")
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
import os
|
||||
import datetime
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
logging.basicConfig(filename='pairwise_compare.log', level=logging.INFO)
|
||||
log.info(f"Log opened {datetime.datetime.now()}")
|
||||
|
||||
get_torch_info()
|
||||
|
||||
name = os.path.basename(sys.argv[0])
|
||||
if name == 'train.py':
|
||||
training_entry()
|
||||
elif name == 'infer.py':
|
||||
infer_entry()
|
||||
else:
|
||||
# alt call patern
|
||||
# python3 pairwise_compare.py train
|
||||
# python3 pairwise_compare.py infer
|
||||
if len(sys.argv) > 1:
|
||||
mode = sys.argv[1].strip().lower()
|
||||
if mode == "train":
|
||||
training_entry()
|
||||
elif mode == "infer":
|
||||
infer_entry()
|
||||
else:
|
||||
log.error(f"Unknown operation: {mode}")
|
||||
log.error("Invalid call syntax, call script as \"train.py\" or \"infer.py\" or as pairwise_compare.py <mode> where mode is \"train\" or \"infer\"")
|
||||
else:
|
||||
log.error("Not enough arguments passed to script; call as train.py or infer.py or as pairwise_compare.py <mode> where mode is \"train\" or \"infer\"")
|
||||
|
||||
log.info(f"Log closed {datetime.datetime.now()}")
|
||||
Reference in New Issue
Block a user