diff --git a/pairwise_compare.py b/pairwise_compare.py index ba86a86..7e819ec 100755 --- a/pairwise_compare.py +++ b/pairwise_compare.py @@ -20,7 +20,7 @@ DEVICE = torch.accelerator.current_accelerator() if torch.accelerator.is_availab DIMENSIONS = 2 HIDDEN_NEURONS = 4 ADAMW_LR = 5e-3 -ADAMW_WiDECAY = 5e-4 +ADAMW_DECAY = 5e-4 TRAIN_STEPS = 2000 TRAIN_BATCHSZ = 8192 TRAIN_PROGRESS = 10 @@ -157,13 +157,13 @@ def training_entry(): set_seed(0) model = comp_nn.PairwiseComparator(d=DIMENSIONS, hidden=HIDDEN_NEURONS).to(DEVICE) - opt = torch.optim.AdamW(model.parameters(), lr=ADAMW_LR, weight_decay=ADAMW_WiDECAY) + opt = torch.optim.AdamW(model.parameters(), lr=ADAMW_LR, weight_decay=ADAMW_DECAY) log.info(f"Using {TRAINING_LOG_PATH} as the logging destination for training...") with lzma.open(TRAINING_LOG_PATH, mode='wt') as tlog: # training loop training_start_time = datetime.datetime.now() - last_ack = datetime.datetime.now() + last_ack = datetime.datetime.now(datetime.timezone.utc) for step in range(TRAIN_STEPS): a, b, y = sample_batch(TRAIN_BATCHSZ) @@ -182,9 +182,9 @@ def training_entry(): tlog.write(f"step={step:5d} loss={loss_fn.item():.7f} acc={acc:.7f}\n") # also print to normal text log occasionally to show some activity. - # every 100 steps check if its been longer than 5 seconds since we've updated the user - if step % 100 == 0: - if (datetime.datetime.now() - last_ack).total_seconds() > 5: + # every 10 steps check if its been longer than 5 seconds since we've updated the user + if step % 10 == 0: + if (datetime.datetime.now(datetime.timezone.utc) - last_ack).total_seconds() > 5: log.info(f"still training... step={step} of {TRAIN_STEPS}") last_ack = datetime.datetime.now()