Files
mltoys/pairwise_compare.py

316 lines
11 KiB
Python
Executable File

#!/usr/bin/env python3
# pairwise_compare.py
import logging
import random
import lzma
import torch
from torch.nn import functional as F
import re
import pandas as pd
import matplotlib.pyplot as plt
import pairwise_comp_nn as comp_nn
# early pytorch device setup
DEVICE = torch.accelerator.current_accelerator() if torch.accelerator.is_available() else "cpu"
# Valves
DIMENSIONS = 2
TRAIN_STEPS = 5000
TRAIN_BATCHSZ = 8192
TRAIN_PROGRESS = 10
BATCH_LOWER = -100.0
BATCH_UPPER = 100.0
# Files
MODEL_PATH = "./files/pwcomp.model"
LOGGING_PATH = "./files/output.log"
EMBED_CHART_PATH = "./files/embedding_chart.png"
EMBEDDINGS_DATA_PATH = "./files/embedding_data.csv"
TRAINING_LOG_PATH = "./files/training.log.xz"
LOSS_CHART_PATH = "./files/training_loss_v_step.png"
ACC_CHART_PATH = "./files/training_error_v_step.png"
# TODO: Move plotting into its own file
def parse_training_log(file_path: str) -> pd.DataFrame:
text: str = ""
with lzma.open(file_path, mode='rt') as f:
text = f.read()
pattern = re.compile(r"step=\s*(\d+)\s+loss=([0-9.]+)\s+acc=([0-9.]+)")
rows = [(int(s), float(l), float(a)) for s, l, a in pattern.findall(text)]
df = pd.DataFrame(rows, columns=["step", "loss", "acc"]).sort_values("step").reset_index(drop=True)
# Avoid log(0) issues for loss plot by clamping at a tiny positive value
eps = 1e-10
df["loss_clamped"] = df["loss"].clip(lower=eps)
return df
# TODO: Move plotting into its own file
def plt_loss_tstep(df: pd.DataFrame) -> None:
# Plot 1: Loss
plt.figure(figsize=(10, 6))
plt.plot(df["step"], df["loss_clamped"])
plt.yscale("log")
plt.xlabel("Step")
plt.ylabel("Loss (log scale)")
plt.title("Training Loss vs Step")
plt.tight_layout()
plt.savefig(LOSS_CHART_PATH)
plt.close()
return None
# TODO: Move plotting into its own file
def plt_acc_tstep(df: pd.DataFrame, eps=1e-10) -> None:
# Plot 2: Accuracy
df["err"] = (1.0 - df["acc"]).clip(lower=eps)
plt.figure(figsize=(10, 6))
plt.plot(df["step"], df["err"])
plt.yscale("log")
plt.xlabel("Step")
plt.ylabel("Error rate (1 - accuracy) (log scale)")
plt.title("Training Error Rate vs Step")
plt.tight_layout()
plt.savefig(ACC_CHART_PATH)
plt.close()
return None
# TODO: Move plotting into its own file
def plt_embeddings(model: comp_nn.PairwiseComparator) -> None:
import csv
log.info("Starting embeddings sweep...")
# samples for embedding mapping
with torch.no_grad():
xs = torch.arange(
BATCH_LOWER,
BATCH_UPPER + 1.0,
0.1,
).unsqueeze(1).to(DEVICE) # shape: (N, 1)
embeddings = model.embed(xs) # shape: (N, d)
# move data back to CPU for plotting
embeddings = embeddings.cpu()
xs = xs.cpu()
# Plot 3: x vs h(x)
plt.figure(figsize=(10, 6))
for i in range(embeddings.shape[1]):
plt.plot(xs.squeeze(), embeddings[:, i], label=f"dim {i}")
plt.title("x vs h(x)")
plt.xlabel("x [input]")
plt.ylabel("h(x) [embedding]")
plt.savefig(EMBED_CHART_PATH)
plt.close()
# save all our embeddings data to csv
csv_data = list(zip(xs.squeeze().tolist(), embeddings.tolist()))
with open(file=EMBEDDINGS_DATA_PATH, mode="w", newline='') as f:
csv_file = csv.writer(f)
csv_file.writerows(csv_data)
return None
def get_torch_info() -> None:
log.info("PyTorch Version: %s", torch.__version__)
log.info("HIP Version: %s", torch.version.hip)
log.info("CUDA support: %s", torch.cuda.is_available())
if torch.cuda.is_available():
log.info("CUDA device detected: %s", torch.cuda.get_device_name(0))
log.info("Using %s compute mode", DEVICE)
def set_seed(seed: int) -> None:
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
# pairs (a, b) with label y = 1 if a > b else 0 -> (a,b,y)
# uses epsi to select the window in which a == b for equality training
def sample_batch(batch_size: int, low=BATCH_LOWER, high=BATCH_UPPER, epsi=1e-4) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
a = (high - low) * torch.rand(batch_size, 1) + low
b = (high - low) * torch.rand(batch_size, 1) + low
epsi = 1e-4
y = torch.where(a > b + epsi, 1.0,
torch.where(a < b - epsi, 0.0, 0.5))
return a, b, y
def training_entry():
get_torch_info()
# all prng seeds to 0 for deterministic outputs durring testing
# the seed should initialized normally otherwise
set_seed(0)
model = comp_nn.PairwiseComparator(d=DIMENSIONS).to(DEVICE)
opt = torch.optim.AdamW(model.parameters(), lr=8e-4, weight_decay=1e-3)
log.info(f"Using {TRAINING_LOG_PATH} as the logging destination for training...")
with lzma.open(TRAINING_LOG_PATH, mode='wt') as tlog:
# training loop
training_start_time = datetime.datetime.now()
for step in range(TRAIN_STEPS):
a, b, y = sample_batch(TRAIN_BATCHSZ)
a, b, y = a.to(DEVICE), b.to(DEVICE), y.to(DEVICE)
logits = model(a, b)
loss_fn = F.binary_cross_entropy_with_logits(logits, y)
opt.zero_grad()
loss_fn.backward()
opt.step()
if step % TRAIN_PROGRESS == 0:
with torch.no_grad():
pred = (torch.sigmoid(logits) > 0.5).float()
acc = (pred == y).float().mean().item()
tlog.write(f"step={step:5d} loss={loss_fn.item():.7f} acc={acc:.7f}\n")
# also print to normal text log occasionally to show some activity.
if step % 2500 == 0:
log.info(f"still training... step={step} of {TRAIN_STEPS}")
training_end_time = datetime.datetime.now()
log.info(f"Training steps complete. Start time: {training_start_time} End time: {training_end_time}")
# evaluate final model accuracy on fresh pairs
with torch.no_grad():
a, b, y = sample_batch(TRAIN_BATCHSZ*4)
a, b, y = a.to(DEVICE), b.to(DEVICE), y.to(DEVICE)
logits = model(a, b)
pred = (torch.sigmoid(logits) > 0.5).float()
errors = (pred != y).sum().item()
acc = (pred == y).float().mean().item()
log.info(f"Final test acc: {acc} errors: {errors}")
# embed model dimensions into the model serialization
torch.save({"state_dict": model.state_dict(), "d": DIMENSIONS}, MODEL_PATH)
log.info(f"Saved PyTorch Model State to {MODEL_PATH}")
def infer_entry():
get_torch_info()
model_ckpt = torch.load(MODEL_PATH, map_location=DEVICE)
model = comp_nn.PairwiseComparator(d=model_ckpt["d"]).to(DEVICE)
model.load_state_dict(model_ckpt["state_dict"])
model.eval()
# sample pairs
pairs = [(1, 2), (10, 3), (5, 5), (10, 35), (-64, 11), (300, 162), (2, 0), (2, 1), (3, 1), (4, 1), (3, 10),(30, 1), (0, 0), (-162, 237),
(10, 20), (100, 30), (50, 50), (100, 350), (-640, 110), (30, -420), (200, 0), (92, 5), (30, 17), (42, 10), (30, 100),(30, 1), (0, 400), (-42, -42)]
a = torch.tensor([[p[0]] for p in pairs], dtype=torch.float32, device=DEVICE)
b = torch.tensor([[p[1]] for p in pairs], dtype=torch.float32, device=DEVICE)
# sanity check before inference
log.debug(f"a.device: {a.device} model.device: {next(model.parameters()).device}")
with torch.no_grad():
probs = torch.sigmoid(model(a, b))
log.info(f"Output probabilities for {pairs.__len__()} pairs")
for (x, y), p in zip(pairs, probs):
log.info(f"P({x} > {y}) = {p.item():.3f}")
def graphs_entry():
get_torch_info()
model_ckpt = torch.load(MODEL_PATH, map_location=DEVICE)
model = comp_nn.PairwiseComparator(d=model_ckpt["d"]).to(DEVICE)
model.load_state_dict(model_ckpt["state_dict"])
model.eval()
plt_embeddings(model)
data = parse_training_log(TRAINING_LOG_PATH)
plt_loss_tstep(data)
plt_acc_tstep(data)
help_text = r"""
pairwise_compare.py — tiny pairwise "a > b?" neural comparator
USAGE
python3 pairwise_compare.py train
Train a PairwiseComparator on synthetic (a,b) pairs sampled uniformly from
[BATCH_LOWER, BATCH_UPPER]. Labels are:
1.0 if a > b + epsi
0.0 if a < b - epsi
0.5 otherwise (near-equality window)
Writes training metrics to:
./files/training.log.xz
Saves the trained model checkpoint to:
./files/pwcomp.model
python3 pairwise_compare.py infer
Load ./files/pwcomp.model and run inference on a built-in list of test pairs.
Prints probabilities as:
P(a > b) = sigmoid(model(a,b))
python3 pairwise_compare.py graphs
Load ./files/pwcomp.model and generate plots + exports:
./files/embedding_chart.png (embed(x) vs x for each embedding dimension)
./files/embedding_data.csv (x and embedding vectors)
./files/training_loss_v_step.png
./files/training_error_v_step.png (1 - acc, log scale)
Requires that ./files/training.log.xz exists (i.e., you ran "train" first).
FILES
./files/output.log General runtime log (info/errors)
./files/pwcomp.model Torch checkpoint: {"state_dict": ..., "d": DIMENSIONS}
./files/training.log.xz step/loss/acc trace used for plots
NOTES
- DEVICE is chosen via torch.accelerator if available, else CPU.
- Hyperparameters are controlled by the "Valves" constants near the top.
"""
if __name__ == '__main__':
import sys
import os
import datetime
# TODO: tidy up the paths to files and checking if the directory exists
if not os.path.exists("./files/"):
os.mkdir("./files")
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(LOGGING_PATH),
logging.StreamHandler(stream=sys.stdout)
])
log = logging.getLogger(__name__)
log.info(f"Log file {LOGGING_PATH} opened {datetime.datetime.now()}")
# python3 pairwise_compare.py train
# python3 pairwise_compare.py infer
# python3 pairwise_compare.py graphs
if len(sys.argv) > 1:
match sys.argv[1].strip().lower():
case "train":
training_entry()
case "infer":
infer_entry()
case "graphs":
graphs_entry()
case "help":
log.info(help_text)
case mode:
log.error(f"Unknown operation: {mode}")
log.error("valid options are one of [\"train\", \"infer\", \"graphs\", \"help\"]")
log.info(help_text)
log.info(f"Log closed {datetime.datetime.now()}")